Balestrin, P. W. G., Balestrin, E., Santiani, F., Biezus, G., Moraes, J. C., Casa, M. S., et al. (2021). Prevalence of Eimeria sp. in broiler poultry houses with positive and negative pressure ventilation systems in Southern Brazil. Avian Dis. 65, 469–473.
Barker, K. J., Coufal, C. D., Purswell, J. L., Davis, J. D., Parker, H. M., Kidd, M. T., et al. (2013). In-house windrowing of a commercial broiler farm during early spring and its effect on litter composition. J. Appl. Poult. Res. 22, 551-558.
Brasil (2007). Ministério da Agricultura, Pecuária e Abastecimento. Instrução Normativa n° 56, de 4 de dezembro de 2007.
Brasil (2014). Ministério da Agricultura, Pecuária e Abastecimento. Secretaria de Defesa Agropecuária. Instrução Normativa n° 21, de 21 de outubro de 2014.
Brasil (2016). Ministério da Agricultura, Pecuária e Abastecimento. Secretaria de Defesa Agropecuária. Instrução Normativa n° 20, de 21 de outubro de 2016.
Burt, C. D., Cabrera, M. L., Rothrock Jr, M. J., Kissel D. E. (2018). Urea hydrolysis and calcium carbonate precipitation in gypsum-amended broiler litter. J. Environ. Qual. 47, 162-169.
Chang, R., Pandey, P., Li, Y., Venkitasamy, C., Chen, Z., Gallardo, R., et al. (2020). Assessment of gaseous ozone treatment on Salmonella Typhimurium and Escherichia coli O157:H7 reductions in poultry litter. Waste Manag. 117, 42–47.
Chapman, H. D., Barta, J. R., Hafeez, M. A, Matsler, P., Rathinam, T., Raccoursier, M. (2016). The epizootiology of Eimeria infections in commercial broiler chickens where anticoccidial drug programs were employed in six successive flocks to control coccidiosis. Poult. Sci. 95, 1774–1778.
Cook, K. L., Rothrock Jr., M. J., Eiteman, M. A., Lovanh, N., Sistani, K. (2011). Evaluation of nitrogen retention and microbial populations in poultry litter treated with chemical, biological or adsorbent amendments. J. Environ. Manag. 92, 1760e1766.
Cressman, M. D., Yu, Z., Nelson, M. C., Moeller, S. J., Lilburn, M. S., Zerby, H. N. (2010). Interrelations between the microbiotas in the litter and in the intestines of commercial broiler chickens. Appl. Environ. Microbiol. 76, 6572- 6582.
DeLaune, P. B., Moore Jr., P. A, Daniel, T. C., Lemunyon, J. L. (2004). Effect of chemical and microbial amendments on ammonia volatilization from composting poultry litter. J. Environ. Qual. 33, 728–734.
Dittoe, D. K., McDaniel, C. D., Tabler, T., Kiess, A. S. (2018). Windrowing poultry litter after a broiler house has been sprinkled with water. J. Appl. Poult. Res. 27, 1-15.
Emmoth, E., Ottoson, J., Albihn, A., Belák, S., Vinnerås, B. (2011). Ammonia disinfection of hatchery waste for elimination of single-stranded RNA viruses. Appl. Environ. Microbiol. 77, 3960-3966.
Figueroa, A., Derksen, T., Biswas, S., Nazmi A., Rejmanek, D., Crossley, B., et al. (2021). Persistence of low and highly pathogenic avian influenza virus in reused poultry litter, effects of litter amendment use, and composting temperatures. J. Appl. Poult. Res. 30, 100096.
Guan, J., Chan, M., Brooks, B.W., Spencer, J.L. (2010). Infectious bursal disease virus as a surrogate for studies on survival of various poultry viruses in compost. Avian Dis. 54, 919–922.
Guo, H., Gu, J., Wang, X., Nasir, M., Yu, J., Lei, L., et al. (2020). Elucidating the effect of microbial inoculum and ferric chloride as additives on the removal of antibiotic resistance genes from chicken manure during aerobic composting. Bioresour. Technol. 309, 122802.
Jenkins, M. C., Parker, C., Ritter, D. (2017). Eimeria oocyst concentrations and species composition in litter from commercial broiler farms during anticoccidial drug or live Eimeria oocyst vaccine control programs. Avian Dis. 61, 214-220.
Machado Junior, P. C., Chung, C., Hagerman, A. (2020). Modeling Salmonella spread in broiler production: Identifying determinants and control strategies. Front. Vet. Sci. 7, 564.
Macklin, K. S., Hess, J. B., Bilgili, S. F. (2008). In-house windrow composting and its effects on foodborne pathogens. J. Appl. Poult. Res. 17, 121-127.
Macklin, K. S., Hess, J. B., Bilgili, S. F., Norton, R. A. (2006). Effects of in-house composting of litter on bacterial levels. J. Appl. Poult. Res. 15, 531-537.
Mendonça, B. S., de Oliveira, W. R., Pereira, R. S., Santos L. R., Rodrigues, L. B., Dickel, E. L., et al. (2020). Research note: The use of ammonia gas for Salmonella control in poultry litters. Poult. Sci. 100, 314-318.
Melo, R.T., Galvão, N.N., Guidotti-Takeuchi, M., Peres, P.A.B.M., Fonseca, B.B., Profeta, R., et al. (2021). Molecular characterization and survive abilities of Salmonella Heidelberg strains of poultry origin in Brazil. Front. Microbiol. 12, 674147.
Oladeinde, A., Cook, K., Orlek, A., Zock, G., Herrington, K., Cox, N., et al. (2018). Hotspot mutations and ColE1 plasmids contribute to the fitness of Salmonella Heidelberg in poultry litter. PLoS One 13, e0202286.
Pepper, C. M., Dunlop, M. W. (2021). Review of litter turning during a grow-out as a litter management practice to achieve dry and friable litter in poultry production. Poult. Sci. 100, 101071.
Roll, V. F. B., Dai Prá, M. A., Roll, A. P. (2011). Research on Salmonella in broiler litter reused for up to 14 consecutive flocks. Poult. Sci. 90, 2257-2262.
Schmidt, A. M., Davis, J. D., Purswell, J. L., Fan, Z., Kiess, A. S. (2013). Spatial variability of heating profiles in windrowed poultry litter. J. Appl. Poult. Res. 22, 319-328.
Siller, P., Daehre, K., Thiel, N., Nübel, U., Roesler, U. (2020). Impact of shortterm storage on the quantity of extended-spectrum beta-lactamase–producing Escherichia coli in broiler litter under practical conditions. Poult. Sci. 99, 2125- 2135.
Singh, R., Kim, J., Jiang X. (2012). Heat inactivation of Salmonella spp. in fresh poultry compost by simulating early phase of composting process. J. Appl. Microbiol. 112, 927-935.
Soliman, E. S., Sallam, N. H., Abouelhassan, E. M. (2018). Effectiveness of poultry litter amendments on bacterial survival and Eimeria oocyst sporulation. Vet. World 11, 1064-1073.
Terzich, M., Pope, M. J., Cherry, T. E., Hollinger, J. (2000). Survey of pathogens in poultry litter in the United States. J. Appl. Poult. Res. 9, 287-291.
Thaxton, Y. V., Balzli, C. L., Tankson, J. D. (2003). Relationship of broiler flock numbers to litter microflora. J. Appl. Poult. Res. 12, 81-84.
de Toledo, T. dos S., Roll, A. A. P., Rutz, F., Dallmann, H. M., Dai Prá, M. A., Leite, F. P. L., et al. (2020). An assessment of the impacts of litter treatments on the litter quality and broiler performance: A systematic review and metaanalysis. PloS One 15, e0232853.
Vaz, C. S. L., Voss-Rech, D., de Avila, V. S., Coldebella, A., Silva, V. S. (2017). Interventions to reduce the bacterial load in recycled broiler litter. Poult. Sci. 96, 2587-2594.
Voss-Rech, D., Kramer, B., Silva, V. S., Rebelatto, R., Abreu, P. G., Coldebella, A., et al. (2019). Longitudinal study reveals persistent environmental Salmonella Heidelberg in Brazilian broiler farms. Vet. Microbiol. 233, 118-123.
Voss-Rech, D., Trevisol, I. M., Brentano, L., Silva, V. S., Rebelatto, R., Jaenisch, F. R. F., et al. (2017). Impact of treatments for recycled broiler litter on the viability and infectivity of microorganisms. Vet. Microbiol. 203, 308-314.