ALMEIDA, R. L. Relações valina: lisina em rações para poedeiras leves de 24 a 58 semanas de idade. 65p. Tese (Doutorado em Zootecnia). Universidade Federal de Viçosa, Viçosa-Minas Gerais, Brasil. 2013.
ATAKISI, O.; ATAKISI, E.; KART, A. 2009. Effects of dietary zinc and L-arginine supplementation on total antioxidants capacity, lipid peroxidation, nitiric oxide, egg weight, and blood biochemical values in japanase quails. Biological Trace Element Research, v.132, p.136-143.
AZNAR, N.; PATEL, A.; ROHENA, C. C. et al. 2016. AMP-activated protein kinase fortifies epitelial tight junctions during energetic stress via its effector GIV/Girdn. Elife, v.5: e20795. DOI: 10.7554/eLife.20795.
AZZAM, M. M. M.; DONG, X. Y.; DAI, L. et al. 2015. Effect dietary L-valine on laying hen performance, egg quality, serum free amino acids, immune function and antioxidant enzyme activity. Bristish Poultry Science, DOI 10.1080/00071668.2014.989487.
BAI, J.; GREENE, E.; LI, W. et al. 2015. Branched-chain amino acids modulate the expression. Of hepatic fatty acid metabolismo-related genes in female broiler chickens. Molecular Nutrition & Food Research, v.59, p.1171-1181.
BALL, R. O.; URSCHEL, K. I. PENCHARZ, P. B. 2007. Nutritional conssequenes of intrerspecies diferences in arginine and lysine metabolismo. Journal of Nutrition, v.137, p.1626S-1641S.
BASSIOUNI, G. F. 2009. The effect of feeding an extra amounts of arginine to local saudi hens on luteinizing hormone secretion. Journal of Biological Science, v.9, p.617-620.
BERTECHINI, A. G. Nutrição de Monogástricos. Lavras. Editora UFLA, 2012, 373p.
BOLEA, S.; PERTUSA, J. A. G.; MARTÍN, F. et al. 1997. Regulation of pancreatic β-cell electical activity and insulin release by physiological amino acid concentrations. Plϋgers Archives, v.433, p.699-704.
BRUEWER, M.; LUEGERING, T.; KUCHARZIK, C. A. et al. 2003. Proinflammatory cytokines disrupt epithelial barrier function by apoptosis-independent mechanisms. Journal of Immunology, v.171, p.6164-6172.
BUNCHASAK, C.; SILAPASOM, T. 2005. Effects of adding methionine in low-protein diet on production performance, reproductive organs and chemical liver composition of laying hens under tropical conditions. International Journal of Poultry Science, v.4, p.301-308.
CASTRO, F. L. S.; SU, S.; CHOI, H. et al. 2019. L-Arginine supplementation enhances growth performance lean muscle, and bone density but not fat in broiler chickens. Poultry Science, v.98, p.1716-1722.
CHEVALLEY, T.; RIZZOLI, R.; MANEN, D. et al. 1998. Arginine increases insulin-like growth factor-I production and collagen synthesis in osteoblast-like cells. Bone, v.23, p.103-109.
CLEMENTI, G.; FIORE, C. E.; MARGANO, N. G. 2001. Role of soy diet and L-arginine in cyclosporine A-induced osteopenia in rats. Pharmacoloy & Toxicology, v.88, p.16-19.
COLLIER, S. R.; CASEY, D. P.; KANALEY, J. A. 2005. Growth hormone response to varying doses of oral arginine. Growth Hormone & IGF Research, v.15, p.136-139.
CONLON, M. A.; KITA, K. 2002. Muscle protein synthesisr rate is altered in response to single injection of insulin-like growth factor-I in seven-day-old Leghorn chicks. Poultry Science, v.81, p.1543-1547.
CORZO, A.; MORAN, E.; HOEHLER, D. 2003. Arginine need of heavy broiler males: Applying the ideal protein concept. Poultry Scicence, v.82, p.402-407.
DAO, H. T.; SHARMA, N. K.; BRADBURY, E. et al. 2021. Response of laying hens ro L-arginie, L-citruline and guanidinoacetic acid supplementation in reduce protein diet. Animal Nutrition, v.7, p.460-471.
DE CARVALHO, F. B.; STRINGHINI, J. H.; MATOS, M. S. et al. 2015. Egg quality of hens fed diferente lysine and arginine levels. Revista Brasileira de Zootecnia, v.17, p.63-68.
DENG, K.; WONG, C. W.; NOLAN, J. V. 2005. Long-term effects of early life L-arginine supplementation on growth performance, lymphoid organs and imune responses in Leghorn-type chickens. British Poultry Science, v.46, p.345-358.
D’MELLO, J. P. F. 2003. Amino acid in farm animal Nutrition. 2 ª ed. CABI, Wallingford. 440p.
DONG, X.; AZZAM, M.; ZOU, X. 2016. Effects of dietary L-isoleucine on laying performance and immunomodulation of laying hens. British Poultry Science, v.95, p.2297-2305.
DUAN, X.; LI, F.; MOU, S. et al. 2015. Effects of dietary L-arginine on laying performance and anti-oxidant capacity of brolier bredder hens, eggs, and offspring during the laying period. Poultry Science, v.94, p.2938-2943.
EMAMI, N. K.; CALIK, A.; WHITE, M. et al. 2019. Necrotic enteritis in broiler chickens: the role of tight junctionos and mucosal immune responses in alleviating the effect of the disease. Microorganisms, v.7, p.231. DOI: 10.3390/microorganisms7080231.
ESCOBAR, J.; FRANK, J. W.; SURYAWAN, A. et al. 2005. Physiological rise in plasma leucine stimulates muscle protein synthesis in neonatal pigs by enhancing translation initiation factor activation. American Journal of Physiology, Endocronology and Metabolism, v.288, p.914-921.
FASCINA, V. B.; PASQUALI, G. A. M.; BERTO, D. A. et al. 2017. Effects of arginine and phytogenic additive supplementation on performance and health of brown-egg layers. Revista Brasileira de Zootecnia, v.46, p.502-514.
FAO, Food and Agricultural Organization of the United Nations. 2018. World egg production. Accessed August 2021. Available in: http://www.fao.org
FERNANDES, J. L.; MURAKAMI, A. E.; MARTINS, E. N. et al. 2009. Effect of arginine on the development of the pectoralis muscle and the diameter and the protein:deoxyribonucleic acid rate of its skeletal myofibers in broilers. Poultry Science, v.88, p.1399-1406.
FIORE, C. E.; PENNISI, P.; CUTULI, V. M. et al. 2000. L-arginine prevents bone loss and bone collagen breakdown in cyclosporin A-treated rats. European Journal of Pharmacology, v.408, p.323-326.
FOUAD, A. M.; EL-SENOUSEY, H. K; YANG, X. J. et al. 2013. Dietary L-arginine supplementation reduces abdominal fat content by modulating lipid metabolism in broiler chickens. Animal, v.7, p.1239-1245.
GALLI, F. 2007. Amino acid and protein modification by oxygen and nitrogen species. Amino Acids, v.32, p.497-499.
GARDELLA, A. C.; DAHLKE, F.; FARIA FILHO, D. E. et al. 2003. Interação entre arginina e lisina altera as respostas produtivas e a incidência de problemas de pernas em frangos de corte. Revista Brasileira de Ciência Avícola, v.5, p.75.
GLOAGUEN, M. N.; LE FLOC’H, L.; BROSSARD, R. et al. 2011. Response of piglets to the valine content in diet in combination with the supply of other branched chain amino acids. Animal, v.5; p.1734-1742.
JOBGEN, W. S.; FRIED, S. K, FU, W. J. et al. Regulatory role for the arginine-nitric oxide pathway in metabolismo of energy substrates. The Journal of Nutritional and Biochemestry, v. 17, p.571-588.
HARPER, A. E.; MILLER, R. H.; BLOCK, K. P. 1984. Branched chain amino acid metabolismo. Animal Review of Nutrition, v.4, p.409-454.
HARRIS, R. A.; KOBAYASHI, R.; MURAKAMI, T. et al. 2001. Regulation of banched-chain alpha-keto acid dehifrogenase kinase expression rat liver. The Journal of Nutrition, v.131, p.841S-845S.
HARTREE, S. A.; CUNNINGHAM, J. F. 1969. Purification of chiken pituitary hormone follicle-stimulating hormone and luteinizing hormone. The Journal of Endocrinology, v.43, p.609-616.
HE, Q.; TANG, H.; REN, P. et al. 2011. Dietary supplementation with L-arginine partially counteracts serum metabonome induced by weaning stress in piglets. Journal of Proteome Research, v.10, p.5214-5221.
KHAJALI, F.; WIDEMAN, R. F. 2010. Dietary arginine: Metabolic, enviromental, immunological and physiological interrelationships. World’s Poultry Science, v66, p.751-766.
KIDD, M. T.; HACKENHAAR, L. 2006. Dietary threonine for broilers: dietary interactions and feed additive supplement use: CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutition and Natural Resources, v.1, n.5, 6pp.
LAIKA, M.; JAHANIAN, R. 2017. Increase in dietary arginine level could ameliorate detrimental impacts of coccidial infection in broilers chickens. Livestock Science, v. 195, p.38-44.
LEESON, S.; SUMMERS, J. D. Commercial Poultry Production. 3 ed. University Books, Guelph, ON. 2005. 406p.
LIEBOLDT, M. L.; HALLE, I.; FRAHM, J. et al. 2016. Effects of long-term graded L-arginine supply on growth develepment, egg laying and egg quality in four genetically diverse purebred layer lines. Japan Poultry Science Association, v.53, p.8-21.
MACELLINE, S. P.; TOGHYANI, M.; CHRYSTAL, P. V. 2021. Amino acid requirements for laying hens: a comprehensive review. Poultry Science, v.100:101036. DOI: 10.1016/j.psj.2021.101036.
MANWAR, S. J.; MOUDGAL, K. V. H.; SASTRY, J. 2006. Role of nitric oxide in ovarian follicular development and egg production in Japanese quail (Coturnix coturnix japônica). Theriogenology,v.65, p.1392-1400.
MONCADA, S.; PALMER, R. M. J.; HIGGS, E. A. 1991. Nitric oxid: physiology, pathophysiology and pharmacology. Pharmacological Reviews, v.43, p.109-142.
MUNIR, K.; MUNEER, M. A.; MASAOUD, E. et al. 2009. Dietary arginine stimulates humoral and cell-mediated immunity in chickens vaccinated and challenged against hydropericardium syndrome vírus. Poultry Science, v.2, p.387-417.
OSPINA ROJAS, I.; MURAKAMI, A.; FAHNANI, J. et al. Tryptofan, threonine and isoleucine supplementation in low-protein diets for commecial hens. Semina Ciências Agrárias, v.36, p.1735-1744.
OXFORD, J. H.; SELVARAJ, R. 2019. Effects of glutamine supplementation on broiler performance and intestinal immune parameters during an experimental coccidiosis infecction. Journal of Applied Poultry Research, v.28, p.1279-1287.
PARENTEAU, I., STEVENSON, M.; KARIE, G. 2020. Egg production and quality responses to increasing isoleucine supplementation in Shaver White hens fed a low crude protein corn-soybean meal diet fortified with synthetic amino acids between 20 and 46 weeks of age. Poultry Science, v.99, p.1444-1453.
PARENTEAU, I. 2019. Performance and metabolic responses to dietary levels of isoleucine in laying hens fed low crude protein diets fortified with amino acids. 109p. Dissertação (Mestrado em Zootecnia). University of Guelph, Ontario-Canada. 2019.
PEGANOVA, S.; EDER, K. (2002a). Studies on requirement and excess of valine in laying hens. Archiv Fϋr Geflϋgekunde, v.66, p.241-250.
PEGANOVA, S.; EDER, K. (2002b). Studies on requirement and excess of isoleucine in laying hens. Poultry Science, v.81, p.1714-1721.
PEGANOVA, S.; HIRCHE, F.; EDER, K. 2002. Requirement of tryptofhan in relation to the supply of large neutral amino acids in laying hens. Poultry Science, v.82, p.815-822.
PETROVIC, V.; BUZADZIC, B.; KORAC, A. et al. 2008. Antioxidative defence alterations in skeletal muscle during prolonged acclimation to cold: role of L-arginine/NO-producing pathway. The Journal of Experimental Biology, v.211, p.114-120.
RITZI, M. M.; ABDELRAHMAN, W.; MOHNL, M. et al. 2014. Effects of probiotics and application methods on performance and response of broiler chickens to na Eimeria challenge. Poultry Science, v.93, p.2772-2778.
ROSTAGNO, H. S.; ALBINO, L. F. T.; HANNAS, M. I. et al. Tabelas Brasileiras para Aves e Suínos. 4 ed. Viçosa-Departamento de Zootecnia, UFV, 20217, 488p.
SHIVAZAD, M.; HARMS, G. RUSSEL, D. E. et al. 2002. Re-evaluation of the isoleucine requirement of the comercial layer. Poultry Science, v.81, p.1869-1872.
SOHAIL, S.; BRYANT, M.; ROLAND, D. 2002. Influence of supplemental lysine, isoleucine, threonine, tryptofan and total sufur amino acids on egg weight of Hyline W-36 hens. Poultry Science, v.81, p.1038-1044.
SOARES, L.; SAKOMURA, N. K.; DORIGAM, J. C. P. et al. 2018. Optimal in-feed amino acid ratio for laying hens based on deletion method. Journal of Animal Physiology and Nutrition, v.103, p.170-181.
SOUZA, H. R. B. Formulação de dietas com aminoácidos totais e digestíveis, diferentes relações arginina: lisina e fontes de metionina para poedeiras comerciais. 58p. Dissertação (Mestrado em Zootecnia). Universidade de São Paulo, Pirassununga-São Paulo, Brasil. 2009.
SUN, X. X.; ZHU, M.J. AMP-activated protein kinase: A therapeutic target in intestinal diseases. Open Biology, v.7:170104. DOI: 10.1098/rsob.170104.
TANG, X. X.; CHEN, H., YU, S. et al. 2010. Lymphocytes accelerate epitelial tight junction assembly: Role of AMP-activated protein kinase (AMPK). Plos One, v.5: e12342. DOI: 10.1371/jounal.pone.0012343.
TAYADE, C.; KOTI, M.; MISHRA, S. C. 2006. L-arginine stimulates intestinal intraepithelial lymphocyte functions and immune response in chickens orally immunized with live intermediate plus strain of infectious bursal disease vaccine. Vaccine, v.24, p.5473-5480.
TOMAS, F. M.; PYM, R. A.; McMURTRY, J. P. et al. 1998. Insulin-like growth factor (IGF)-I but not IGF-II promotes lean growth and feed efficiency in broiler chickens. General and Comparative Endocrionology, v. 110, p.262-275.
WANG, L.; XU, Z. R.; JIA, J. F. et al. 2006. Effects of arsenic (AsIII) on lipid peroxidation, glutathione contente and antioxidant enzymes in growing pigs. Asian-Australasian Journal Animal Science, v.19, p.727-733.
WEN, J.; HELMBRECHT, M.; ELLIOT, M. A. et al. 2019. Evaluation of the valine requirement of small-framed first cycle laying hens. Poultry Science, v.98, p.1272-1279.
WILTAFSKY, M. K.; PFAFFIT, M. W.; ROTH, F. X. 2010. The effects of branched-chain amino acid interactions on growth performance, blood metabolites, enzyme kinetics and transcriptomics in weaned pigs. The British Journal of Nutrition, v.103, p.964-976.
WU, G.; BAZER, F. W.; BURGHARDT, R. C. et al. Impacts of amino acid Nutrition on pregnancy outcome in pigs: mechanisms and implications for swine production. Journal of Animal Science, v.88, p.18-22, 2000.
WU, G.; MORRIS, S. M, Jr. 1998. Arginine metabolismo: Nitric oxide beyond. Biochemistry Jounal, v.336, p.249-258.
WU, G. Y. 2009. Amino acids: Metabolism, functions and Nutrition. Amino Acids, v.37, p.1-17.
WU, L. Y.; YANG, Y. J.; GUO, X. Y. Dietary L-arginine supplementation benefecially regulates body fat deposition of meat-type ducks. 2011. Britsh Poultry Science, v.52, p.221-226.
YANG, H.; JU, X.; WANG, Z. et al. 2016. Effects of arginine supplementation on organ development, egg quality, serum biochemical parameters, and immune status of laying hens. Brazilian Journal of Poultry Science, v.18. p.181-186.