A fibra dietética é uma mistura complexa de carboidratos associados a outros compostos. As fibras solúveis e insolúveis possuem efeitos bem diferentes; a primeira pode aumentar a viscosidade do quimo e diminuir o contato enzima-substrato, já a fibra insolúvel, por sua vez, modifica a motilidade gastrointestinal e o tempo de trânsito da digesta. A inclusão de fibras nas dietas para leitões permitem modular as populações microbianas do trato digestório, influenciar o sistema imunológico, modificar a motilidade gastrointestinal e o tempo de trânsito da digesta, além de favorecer o desenvolvimento de estruturas intestinais ligadas a capacidade absortiva e digestiva dos órgãos. Os produtos finais da fermentação das fibras são ácidos graxos de cadeia curta (AGCC), água e gases, e outros metabólitos, aproveitados em processos vitais. Objetiva-se nesta revisão, discutir informações sobre a utilização de fibras na nutrição de leitões, bem como, sua finalidade metabólica, atuação e alterações no sistema digestivo. Em conclusão, a utilização de fibras para leitões exerce influência positiva na anatomia, função e no desenvolvimento do trato gastrointestinal, de acordo com a característica da fibra. Porém, sabe-se pouco sobre o potencial de atuação das fibras dietéticas no sistema imunitário e sua consequente melhora na saúde intestinal.
Palavras-chave: carboidratos, nutrição, alterações metabólicas.
AWATI, A. et al. Dietary carbohydrates with different rates of fermentation affect fermentation and-product profiles in different sites of gastro-intestinal tract of weaning piglet. Animal Science,v.82, p.837-843, 2006.
BACH KNUDSEN, K. E. The nutritional significance of “dietary fibre” analyses. Animal Feed Science and Technology, v. 90, p. 3-20, 2001.
BEDFORD, M. R. Exogenous enzymes in monogastric nutrition - their current value and future benefits. Animal Feed Science and Technology, v. 86, p. 1-13, 2000.
BIKKER, P. et al. The effect of dietary protein and fermentable carbohydrates levels on growth performance and intestinal characteristics in newly weaned piglets. Journal of Animal Science, v.84, n.12, p.3337-3345, 2006.
BINDELLE, J.; LETERME, P.; BULDGEN, A. Nutritional and environmental consequences of dietary fibre in pig nutrition: a review. Biotechnology Agronomy Society and Environment, v. 12, p. 69-80, 2008.
CAMPBELL, G. L.; BEDFORD, M. R. Enzyme applications for monogastric feeds: a review. Canadian Journal of Animal Science, v. 72, p. 449-466, 1992.
CARNEIRO, M. S. C. et al. Effects of dietary fibre source and enzyme supplementation on faecal apparent digestibility, short chain fatty acid production and activity of bacterial enzymes in the gut of piglet. Animal Feed Science and Technology, v. 146, p. 124-136, 2008.
COEY W. E.; ROBINSON K. L. Some effects of dietary crude fibre on live-weight gains and carcass conformation of pigs. The Journal of Agricultural Science, 45, pp 41-47, 1954.
GASKINS, H. R. The commensal microbiota and development of mucosal defense in the mammalian intestine. In: International Symposium on Digestive Physiology in Pigs, 9., 2003, Canada. Anais… Canada, 2003, p. 57-71.
HANCZAKOWSKA, E.; SWIATKIEWICZ, M.; BIA£ECKA, A. Pure cellulose as a feed supplement for piglets. Medycyna Weterynaryjna, v. 64, p. 45- 48, 2008.
HANSEN, J. A. et al. Effects of a grind and mix high nutrient density diet on starter pig performance. Journal of Animal Science, 70 (Suppl. 1): 59 (Abstr.), 1992.
HEDEMANN, M. S. et al. Intestinal morphology and enzymatic activity in newly weaned pigs fed contrasting fiber concentrations and fiber properties. Journal of Animal Science, v. 84, p. 1375-1386, 2006.
HEO, J. M. et al. Feeding a diet with decreased protein content reduces indices of protein fermentation and the incidence of post weaning diarrhea in weaned pigs challenged with an entero toxigenic strain of Escherichia coli. Journal of Animal Science, v.87, n.9,p.2833-2843, 2009.
HOUDIJK, J. G. M. Effects of non-digestible oligosaccharides in young pig diets. Ph.D. Diss., Wageningen Univ., Wageningen, the Netherlands, 1998.
HTOO, J.K. et al. Effect of dietary protein content on ileal amino acid digestibility, growth performance, and formation of microbial metabolites in ileal and cecal digesta of early-weaned pigs. Journal of Animal Science, v.85, n.12, p.3303- 3312, 2007.
JØRGENSEN, H.; ZHAO, X.-Q.; EGGUM B. O. The influence of dietary fibre and environmental temperature on the development of the gastrointestinal tract, digestibility, degree of fermentation in the hind-gut and energy metabolism in pigs. British Journal of Nutrition, v. 75, p. 365–378, 1996.
LALLÈS, J. P. et al. Weaning a challenge to gut physiologists. Livestock Production Science, v. 108, p. 82–93, 2007.
MATEOS, G. G. et al. Inclusion of oat hulls in diets for young pigs based on cooked maize or cooked rice. Journal of Animal Science, Champaign, v. 82, p. 57-63, 2006.
MOLIST, F. et al. Effects of the insoluble and soluble dietary fibre on the physicochemical properties of digesta and microbial activity in early weaned piglets. Animal Feed Science and Technology, Amsterdam, v.149, p. 346-353, 2009.
MOLLY, K. Formulating to solve the intestinal puzzle. Pig Progress, v. 17, p. 20-22, 2001.
MONTAGNE, L.; PLUSKE, J. R.; HAMPSON, D. J.A review of interactions between dietary fibre and the intestinal mucosa, and their consequences on digestive health in young non-ruminant animals. Animal Feed Science and Technology, v. 108, p. 95-117, 2003.
MOSENTHIN, R.; HAMBRECHT, E.; SAUER, W. C. Utilisation of different fibres in piglet feeds. Recent Development in Pig Nutrition, v. 3, p. 293-322, 2001.
O’CONNELL, J. M.; CALLAN, J. J.; O’DOHERTY, J. V. The effect of dietary crude protein level, cereal type and exogenous enzyme supplementation on nutrient digestibility, nitrogen excretion, faecal volatile fatty acid concentration and ammonia emissions from pigs. Animal Feed Science and Technology, v. 127, p. 73-88, 2006.
OWUSU-ASIEDU, A. et al. Effects of guar gum and cellulose on digesta passage rate, ileal microbial populations, energy and protein digestibility, and performance of grower pigs. Journal of Animal Science, v. 84, p. 843- 852, 2006.
PARTANEN, K. H.; MROZ, Z. Organic acids for performance enhancement in pig diets. Nutrition Research Reviews, v. 12, p. 117–145, 1999.
PASCOAL, L. A. F. et al. Fiber sources in diets for newly weaned piglets. Revista Brasileira de Zootecnia, v. 41, n.3, p. 636-642, 2012.
PETTIGREW, J. E. Ingredientes alimentares que melhoram a saúde. Revista Porkworld, v. 46, p. 278- 283, 2008.
PLUSKE, J. R. et al. Nutritional influences on some major enteric bacterial diseases of pigs. Nutrition Research Reviews, v. 15, p. 333–371, 2002.
PRYCE, J.D. A modification of the Barker-Summerson method for the determination of lactic acid. Analyst, v.94, p.1151-1152, 1969.
SCHIAVON, S. et al. Effects of sugar beet pulp on growth and health status of weaned piglets. Italian Journal of Animal Science, Pavia, v. 3, p. 337- 351, 2004.
SCHLEY, P. D.; FIELD, C. J. The immune-enhancing effects of dietary fibres and prebiotics. British Journal of Nutrition, v. 87, p. 221–230, 2002.
SHRIVER, J. A. et al. Effects of adding fiber sources to reduced-crude protein, amino acid supplemented diets on nitrogen excretion, growth performance, and carcass traits of finishing pigs. Journal of Animal Science, v.81, n.2, p.492-502, 2003.
VAREL, V. H.; YEN, J. T. Microbial perspective on fiber utilization by swine. Journal of Animal Science, v. 75, p. 2715-2722, 1997.
WELLOCK, I. J. et al. The consequences of non-starch polysaccharide solubility and inclusion level on the health and performance of weaned pigs challenged with entero toxigenic Escherichia coli. British Journal of Nutrition, v. 99, p. 520–530, 2008.
WILLIAMS, B. A., VERSTEGEN, M. W. A., TAMMINGA, S. Fermentation in the large intestine of single-stomached animals and its relationship to animal health. Nutrition Research Review, v. 14, p. 207–227, 2001.