The aim of this study was to determine the nutritional-energetic value of guava seed meal (GSM) for piglets in the starter phase and its effects on feed digestibility, growth performance, plasma parameter and diarrhea incidence. Assay I (digestibility testing) involved 16 entire male piglets with average initial body weight of 18.91 ± 1.36 kg were distributed in a randomized block design, allocated to two treatments with eight replications. Treatments consisted of a reference diet and a test diet with a 20% replacement by GSM. In assay II (performance testing), 128 entire male piglets and average initial body weight of 14.47 ± 2.09 kg were distributed in a randomized block design, with four treatments repeated four times in two blocks. Treatments consisted of increasing levels of GSM (0%, 5%, 10%, 15%). Values higher were found for glutamine and arginine. The high GE value of the GSM was reflected in an elevated AMCGE of the feed, with greater DM and CP digestibility. There was difference (P < 0.05) for average daily feed intake, feed conversion ratio, urea and diarrhea. In conclusion, GSM does not affect apparent nutrient digestibility, and it promotes greater feed intakeup to 10% inclusion and 15% improves diarrhea incidence.
KEYWORDS By-product; digestibility; fibrous ingredient; growth performance; nutritional value
Association of Official Analytical Chemists – AOAC. 2005. Official methods of analysis, 18th ed. Arlington, VA: The Association of Official Analysis Chemists.
Awati A, Williams BA, Bosch MW, Gerrits WJ, Verstegen MV. 2006. Effect of inclusion of fermentable carbohydrates in the diet on fermentation end-product profile in feces of weanling piglets. J Anim Sci. 84(8):2133–2140. doi:10.2527/jas.2004-676.
Bindelle J, Leterme P, Buldgen A. 2008. Nutritional and environmental con-sequences of dietary fibre in pig nutrition: a review. Biotechnol Agron Soc Environ. 12(1):69–80.
Brazilian Compendium of Animal Feeding – CBAA. 2013. Guide of analytical methods, 4th ed. São Paulo, SP: ANFAR.
Budiño FEL, Prezzi JA, Rodrigues DJ, Monferdini RP, Otsuk IP. 2015. Performance and digestibility of piglets fed with rations containing alfalfa hay and fructooligosaccharide at the initial phase. Rev Bras Saúde Prod Anim. 16(4):796–810. doi:10.1590/S1519-99402015000400004.
Carvalho PLO, Moreira I, Paiano D, Mourinho FL, Oliveira GC, Kuroda ISJ. 2009. Sticky coffee hull silage on pig starter feeding. Ciênc agrotec. 33 (5):1400–1407. doi:10.1590/S1516-35982011000200016.
Castro JFG, Camargo JCM, Castro AMMG, Budino FEL. 2005. Pig feeding fiber. BIA. 63:265–280.
Castro DES, Carvalho PLO, Oliveira NTE, Nunes RV, Genova JL, Rocha VS, Santana ALA, Oliveira AC, Carvalho ST. 2017. Dehydrated cassava co-product in starting piglets feeding. Semina: Ciênc Agrár. 38(4):2775– 2788. doi:10.5433/1679-0359.2017v38n4Supl1p2775.
Fachinello MR, Pozza PC, Moreira I, Carvalho PL, Castilha LD, Pasquetti TJ, Esteves LA, Huepa LM. 2015. Effect of passion fruit seed meal on growth performance, carcass, and blood characteristics in stater pigs. Trop Anim Health Prod. 47(7):1397–1407. doi:10.1007/s11250-015-0877-5.
Farias LA, Lopes JB, Figueirêdo AV, Albuquerque DMN, Neto AAA, Ramos LSN. 2008. Cashew pulp meals (Anacardium Occidentale l.) for growing pig: nutrient metabolism and performance. Ciênc Anim Brasil. 9 (1):100–109. doi:10.5216/cab.v9i1.3673.
Frank N, Andrews FM, Elliott SB, Lew J, Boston RC. 2005. Effects of rice bran oil on plasma lipid concentrations, lipoprotein composition, and glucose dynamics in mares. J Anim Sci. 83(11):2509–2518. doi:10.2527/2005. 83112509x.
Furlan AC, Mantovani C, Murakami AE, Moreira I, Scapinello C, Martins EN. 2001. Use of sunflower meal in broiler chicks feeding. Rev Bras de Zootec. 30(1):158–164. doi:10.1590/S1516-35982001000100023.
Genova JL, Carvalho PLDO, Oliveira NTED, Oliveira ADC, Gois FD, Castro DEDS, Souza FNC, Trautenmüller H, Santos LBDAD, Leal IF. 2019. Partial replacement of soybean meal with different protein sources in piglet feed during the nursery phase. Asian-Australas J Anim Sci. 32 (11):1725–1733. doi:10.5713/ajas.17.0753.
Georganas A, Giamouri E, Pappas AC, Papadomichelakis G, Galliou F, Manios T, Zervas G. 2020. Bioactive compounds in food waste: a review on the transformation of food waste to animal feed. Foods. 9 (3):291. doi:10.3390/foods9030291.
Gomes KB, Stella AL. 2018. Arginine nutrition in neonatal pigs. Rev Eletr Nutritime. 15(1):8081–8080.
Goulart FR, Adorim TJ, Mombach PI, Silva LP. 2016. Importance of dietary fiber in non-ruminant animal nutrition. Rev Ciênc Inova. 1(1):141–154. doi:10.26669/2448-4091104.
Hanczakowska E, Wiytkiewicz M, Szewczyk A. 2007. Effect of dietary nettle extract on pig meat quality. Medy Weter. 63(5):525–527. doi:10.17221/ 49/2016-CJAS.
Jarrett S, Ashworth C. 2018. The role of dietary fibre in pig production, with a particular emphasis on reproduction. J Anim Sci Biotechnol. 9:1–11. doi:10.1186/s40104-018-0270-0.
Jha R, Fouhse JM, Tiwari UP, Li L, Willing BP. 2019. Dietary fiber and intes-tinal health of monogastric animals. Front Vet Sci. 6:1–1. doi:10.3389/ fvets.2019.00048.
Kerr BJ, Shurson GC. 2013. Strategies to improve fiber utilization in swine. J Anim Sci Biotechnol. 4(1):11. doi:10.1186/2049-1891-4-11.
Leal IF. 2018. Dry residue of acerola industrialization in swines feeding in the starter phase [Master’s thesis]. IN: State University of Western Paraná. http://tede.unioeste.br/handle/tede/4025.
Le Goff G, Noblet J. 2001. Comparative total tract digestibility of dietary energy and nutrients in growing pigs and adult sows. Anim Sci J. 79 (9):2418–2427. doi:10.2527/2001.7992418x.
Lindberg JE. 2014. Fiber effects in nutrition and gut health in pigs. J Anim Sci Biotechno. 5(1):15. doi:10.1186/2049-1891-5-15.
López J, Stumpf JRW. 2000. Influence of sorghum grain as a source of starch in sheep fed hay. Plasma Parameters Rev Bras Zootec. 29(4):1183–1190. doi:10.1590/S1516-35982000000400032.
Lousada Júnior E, Costa JMC, Neiva JNM. 2006. Physical-chemical character-ization of tropical fruit by-products for use in animal feed. Rev Ciênc Agron. 37(1):70–76.
Mateos GG, Martin F, Latorre MA, Vicente B. 2006. Inclusion of oat hulls in diets for young pigs based on cooked maize or cooked rice. Anim Sci J. 82(2):57–63. doi:10.1016/j.anifeedsci.2006.07.006.
Matterson LD, Potter LM, Stutz MW, Singsen EP. 1965. The metabolizable energy offeed ingredients for chickens. Res Rep Connect Agric Exp Stn. 7(1):11–14.
Montagne L, Pluske JR, Hampson DJ. 2003. A review of interactions between dietary fibre and the intestinal mucosa, and their conse-quences on digestive health in young non-ruminant animals. Anim Feed Sci Technol. 108(1-4):95–117. doi:10.1016/S0377-8401(03)00163-9.
Navarro D, Bruininx E, de Jong L, Stein HH. 2018. The contribution of diges-tible and metabolizable energy from high-fiber dietary ingredients is not affected by inclusion rate in mixed diets fed to growing pigs. J Anim Sci. 96:1860–1868. doi:10.1093/jas/sky090.
Noblet J, Perez JM. 1993. Prediction of digestibility of nutrients and energy values of pig diets from chemical analysis. Anim Sci J. 71(12):3389–3398. doi:10.2527/1993.71123389x.
Oliveira RAG, Lima EO, Vieira WL, Freire KRL, Trajano VN, Lima IO, Souza EL, Toledo MS, Raimundo NFS. 2006. Study of the interference of essential oils on the activity of some antibiotic used clinically. Rev Bras Farmacogn. 16(1):77–82. doi:10.1590/S0102-695X2006000100014.
Pascoal LAF, Thomaz MC, Watanabe PH, Ruiz US, Ezequiel JMB, Amorim AB, Daniel E, Masson GCI. 2012. Fiber sources in diets for newly weaned piglets. Rev Bras Zootec. 41(3):636–642. doi:10.1590/S1516-35982012000300024.
Pekas JC. 1968. Versatible swine labotarory apparatus for physiologic and meta-bolic studies. Anim Sci J. 2(5):1303–1306. doi:10.2527/jas1968.2751303x.
Pérez-Calvo E, Wicaksono AN, Canet E, Daulton E, Ens W, Hoeller U, Covington JA. 2019. The measurement of volatile organic compounds in faeces of piglets as a tool to assess gastrointestinal functionality. Biosyst Eng. 184:122–129. doi:10.1016/j.biosystemseng.2019.06.005.
Piva A, Panciroli A, Meola E, Formigoni A. 1996. Lactitol enhances short-chain fatty acid and gas production by swine cecal microflora to a greater extent when fermenting low ratherthan high fiber diets. J Nutr. 126(1):280–289. doi:10.1093/jn/126.1.280.
Potkins ZV, Lawrence TLJ, Thomlinson JR. 1991. Effects of structural and non-structural polysaccharides in the diet of the growing pig on gastric emptying rate and rate of passage of digesta to the terminal ileum and through the total gastrointestinal tract. Br J Nutr. 65(3):391– 413. doi:10.1079/bjn19910100.
R Development Core Team. 2013. R: A language and environment for stat-istical computing. Vienna, Austria: R Foundation for Statistical Computing. ISBN 3-900051-07-0.
Roberto BS, Silva LP, Macagnan FT, Bizzani M, Bender ABB. 2015. Nutritional quality and acceptability of the guava peel and seed-added cereal bars. R Inst Adolfo Lutz. 74(1):39–48.
Rostagno HS, Albino FFT, Donzele JL, Oliveira RF, Ferreira AS, Euclides RF, Albino LFT, Gomes PC, Lopes DC, Barreto SLT. 2017. Brazilian tables for poultry and swine: food composition and nutrition requirements, 4th ed. Viçosa, MG: UFV.
Sakomura NK, Rostagno HS. 2016. Monogastric nutrition research methods, 2nd ed. Jaboticabal, SP: Funep.
Sakomura NK, Silva JHV, Costa FG, Fernandes JBK, Hauschild L. 2014. Non ruminant nutrition, 1st ed. Jaboticabal, SP: Funep.
Santos SL, Mascarenhas GA, Oliveira FH. 2016. Digestive physiology and nutrition post weaning piglets. Rev Elet Nutrit. 13(1):4570–4584.
Shi XS, Noblet J. 1993. Contribution of the hindgut to digestion of diets in growing pigs and adult sows: effect of diet composition. Livest Prod Sci. 34(3-4):237–252. doi:10.1016/0301-6226(93)90110-4.
Silva MAA, Furlan AC, Moreira I, Paiano D, Scherer C, Martins EN. 2008. Nutritional evaluation of cassava root silage with or without whole soybean for nursery piglets. Rev Bras Zootec. 37(8):1441–1449. doi:10. 1590/S1516-35982008000800015.
Silva EP, Rabello CBV, Júnior WMD, Moreira W, Loureiro RVS, Guimaraes AAS, Lima MB, Arruda EMF, Barbosa-Lima R. 2009. Economic evaluation of tomato and guava residues inclusion in laying hens ration. Rev Bras Saúde Prod An. 10(4):774–785.
Sniffen CJ, O’connor JD, Van Soest PJ, Fox DG, Russel JB. 1992. A net carbo-hydrate and protein system for evaluating cattle diets: II. Carboihydrate and protein availability. J Anim Sci. 70(10):3562–3577. doi:10.2527/1992. 70113562x.
Souza MSB, Vieira LM, Silva MJM, Lima A. 2011. Caracterização nutricional e compostos antioxidantes em resíduos de polpas de frutas tropicais. Ciênc Agrotec. 35(3):554–559.
Souza da Silva C, van den Borne JJ, Gerrits WJ, Kemp B, Bolhuis JE. 2012. Effects of dietary fibers with different physicochemical properties on feeding motivation in adult female pigs. Physiol Behav. 107(2):218– 230. doi:10.1016/j.physbeh.2012.07.001.
Tardocchi CFT, Soares RTRN, Bonaparte TP, Cabral NO. 2014. Digestibility of agro industrial residues for piglets in initial phase. Revista Elet Nutrit. 11(6):3770–3780.
Teixeira EW. 1995. Use of fibrous feed by pigs. Rev Bras Zootec. 33(1):19–27.
Trindade NMA, Petelincar IM, Berto DA, Moreira JA, Vitti DMSS. 2004.
Powdered fruits pulp residue in the piglets feeding in the nursery phase. Rev Bras Zootec. 33(5):1254–1262. doi:10.1590/S1516-35982004000500018.
Wei R, Zimmerman DR. 2003. An evaluation of the NRC (1998) growth model in estimating lysine requirements of barrows with a lean growth rate of 348 g/d. J Anim Sci. 81(7):1772–1780. doi:10.2527/2003. 8171772x.
Wenk C. 2001. The role of dietary fiber in the digestive physiology of the pig. Anim Feed Sci Technol. 90(1-2):21–33. doi:10.1016/S0377-8401 (01)00194-8.
Zhang W, Li D, Liu L, Zang J, Duan Q, Yang W, Zhang L. 2013. The effects of dietary fiber level on nutrient digestibility in growing pigs. J Anim Sci and Biotechno. 4(1):1–17. doi:10.1186/2049-1891-4-17.
Ziemer CJ, Kerr BJ, Weber TE, Arcidiacono S, Morrison M, Ragauskas A. 2012. Effects of feeding fiber-fermenting bacteria to pigs on nutrient diges-tion, fecal output, and plasma energy metabolites. J Anim Sci. 90 (11):4020–4027. doi:10.2527/jas.2012-5193.